Rural and Remote Health Journal photo
African section Asian section Australasian section European section North American section
home
login/register
current articles

contribute
information for authors
status/user profile
links/forums
about us

Original Research

The influence of a continuing education program on the image interpretation accuracy of rural radiographers

Submitted: 19 December 2008
Revised: 21 March 2009
Published: 24 April 2009

Full text: You can view the full article, or view a printable version.
Comments: (login to access the comments on this article)

Author(s) : Smith TN, Traise P, Cook A.

Tony SmithPeter TraiseAiden Cook

Citation: Smith TN, Traise P, Cook A.  The influence of a continuing education program on the image interpretation accuracy of rural radiographers. Rural and Remote Health 9: 1145. (Online) 2009. Available: http://www.rrh.org.au

ABSTRACT

Introduction:  In regional, rural and remote clinical practice, radiographers work closely with medical members of the acute care team in the interpretation of radiographic images, particularly when no radiologist is available. However, the misreading of radiographs by non-radiologist physicians has been shown to be the most common type of clinical error in the emergency department. Further, in Australia few rural radiographers are specifically trained to interpret and report on images. This study aimed to evaluate the accuracy of a group of rural radiographers in interpreting musculoskeletal plain radiographs, and to assess the effectiveness of continuing education (CE) in improving their accuracy within a short time frame.
Methods:  Following ethics approval, 16 rural radiographers were recruited to the study. At inception a purpose-designed ‘test-object’ of 25 cases compiled by a radiologist was used to assess image interpretation accuracy. The cases were categorised into three grades of complexity. The radiographers entered their answers on a structured radiographer opinion form (ROF) that had three levels of response – ‘general opinion’, ‘observations’ and ‘open comment’. Subsequent to base-line testing, the radiographers participated in a CE program aimed at improving their image interpretation skills. After a 4 month period they were re-tested using the same methodology. The ROFs were scored by the radiologist and the pooled results analysed for statistically significant changes at all ROF levels and grades of complexity.
Results:  While for the small number of less complex grade 1 cases there was no change in image interpretation accuracy, for the more numerous and more complex grade 2 and grade 3 cases there was a statistically significant improvement at the ‘general opinion’ and ‘observation’ levels (paired t-test, p < 0.05). Also, with the exception of the small sample of grade 1 cases, the proportion of cases correctly interpreted by the radiographers decreased as the ROF level, and therefore the amount of detail required, increased.
Conclusions:  This study had a number of methodological limitations but the results suggest that short-term, intensive CE programs can improve the ability of radiographers to accurately interpret plain musculoskeletal radiographic examinations. Similar, larger scale initiatives such as this could help reduce the risk of misdiagnosis in acute care settings, especially in the absence of a radiologist. However, radiographers’ ability to use radiological vocabulary needs improvement. The complementary role that exists between radiographers and other members of the acute care team should be nurtured and developed in the context of declining numbers of radiologists, particularly in non-metropolitan areas. Intensive, short-term training in image interpretation may target junior medical officers, GPs and critical care nurse practitioners, as well as radiographers.

Key words:  continuing education, emergency care, radiography.

This abstract has been viewed 2854 times since 24-Apr-2009.

   
 

   CONTACT US | COPYRIGHT AND DISCLAIMER | ADMIN ONLY